EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavik
(Guest Editors)

Volume 26 (2007), Number 3

Texturing Internal Surfaces from a Few Cross Sections

Nico Pietroni! 2, Miguel A. Otaduy3, Bernd Bicke13, Fabio Ganovelli! and Markus Gross?

! Visual Computing Laboratory, ISTI-CNR, Pisa, Italy
2 Endocas Center for Computer Assisted Surgery, Pisa, Italy
3 Computer Graphics Laboratory, ETH Zurich, Switzerland

Abstract

We introduce a new appearance-modeling paradigm for synthesizing the internal structure of a 3D model from
photographs of a few cross-sections of a real object. When the internal surfaces of the 3D model are revealed as
it is cut, carved, or simply clipped, we synthesize their texture from the input photographs. Our texture synthesis
algorithm is best classified as a morphing technique, which efficiently outputs the texture attributes of each surface
point on demand. For determining source points and their weights in the morphing algorithm, we propose an
interpolation domain based on BSP trees that naturally resembles planar splitting of real objects. In the context of
the interpolation domain, we define efficient warping and morphing operations that allow for real-time synthesis
of textures. Overall, our modeling paradigm, together with its realization through our texture morphing algorithm,
allow users to author 3D models that reveal highly realistic internal surfaces in a variety of artistic flavors.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Color, Shading, Shadow-

ing, and Texture

1. Introduction

Textures provide a simple and efficient way of modeling
3D objects by separating appearance properties from the ge-
ometric description. Textures have been profusely used in
computer graphics for modeling the external structure of ob-
jects, either through photographs [SKvW*92] or procedural
models [Per85, EMP*94]. When objects undergo topologi-
cal changes, their internal structure is revealed, and this phe-
nomenon has motivated approaches for modeling the tex-
ture of internal surfaces of objects [HB95,DGF98,CDM*02,
JDR04,0NOI04]. However, these approaches are either lim-
ited in their scope or do not aim at producing photorealistic
results. The simple procedure of taking photographs of ob-
jects and “pasting” them on a 3D model has been success-
fully applied to external but not internal surfaces.

In this paper, we introduce a new modeling paradigm. As
shown in Figure 1, the input data to our modeling paradigm
consists of the boundary representation of a 3D model, plus
a few photographs of cross-sections of a real object, which
we refer to as exemplars. This data is sufficient for defining
plausible appearance properties of internal structure at any
point inside the 3D model and, as a result, we can gener-
ate instances of the 3D model that reveal internal surfaces

© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

with highly realistic texture. Our modeling paradigm can be
applied for carving 3D models out of other objects, interac-
tively texturing cut surfaces in virtual cutting or fracture sim-
ulations, transferring internal textures of real objects to arbi-
trary 3D models without topology restrictions, or produc-
ing artistic combinations of internal textures from different
objects. We also relax the requirement of full cross-section
photographs, allowing the user to input partial samples or
even synthetic exemplars.

With our approach, it would be possible to compute a full
3D volumetric texture and then synthesize an internal sur-
face as a cut on the 3D texture. However, the computation of
the 3D texture is not a requirement. We have designed an ef-
ficient algorithm for on-demand computation on a per-point
basis inside the 3D model, which, in our implementation,
yields a throughput of 20000 points/sec. Our on-demand so-
lution allows for a texture resolution that is not limited by
storage, at most by the resolution of the input exemplars.

Our texture morphing algorithm rests on two main techni-
cal contributions. The first contribution is the definition of a
domain and a procedure for interpolating appearance prop-
erties from planar oriented exemplars in 3D. We observe that
splitting a physical object with planar cuts produces a binary



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

Figure 1: Our Paradigm for Digital Content Creation. We capture images of internal surfaces of real objects and, in an
interactive editor, we place them in the local reference frame of a 3D model. Relying on our two main technical contributions (a
natural interpolation domain for object cross-sections and a novel texture morphing algorithm), we can, among other results,
produce models that reveal internal surfaces with highly realistic texture, or carve 3D models out of organic objects.

space partitioning (BSP) [FKN80] of the object, thus we nat-
urally employ a BSP tree for decomposing our interpolation
domain. Then, we employ curved projections and scattered
data interpolation for defining source points for interpola-
tion and their weights. The second contribution is an effi-
cient single-point multi-exemplar morphing algorithm, in-
spired on the elegant warping-based morphing algorithm of
Matusik et al. [MZDO05], with notable differences. We adapt
the computation of texture warpings to our BSP-based in-
terpolation domain, and we present an efficient method for
computing inverse warpings on a per-point basis through
first-order approximation, plus a local orientation-aware his-
togram matching procedure for feature enhancement.

We implement our modeling paradigm through an inter-
active and very intuitive editor where the user can place the
exemplars inside the 3D model, trigger the preprocessing of
the data, and then use the precomputed data for the actual
on-demand computation of internal textures. We continue
the paper with a discussion of related work, and then we
describe our contributions and results.

2. Related Work

The problem of texture synthesis is typically posed as pro-
ducing a large (non-periodic) texture from a small exam-
ple. Most of the existing approaches work on 2D tex-
tures, trying to match target pixels to those in the sam-
ple [EL99, WLO00]. Wei [WeiO1] applied a similar idea to
extend 2D synthesis algorithms to 3D, by using orthogo-
nal 2D views and combining them in the search for best
matches. Other statistical approaches have also been ap-
plied for 3D texture synthesis, such as the equalization of
histograms between 2D views and the 3D volume [HB95],
or an improved method that accounts for Fourier transform
coefficients [DGF98]. The latter method employs orthogo-
nal cross-sections, but it cannot handle textures with clearly
structured features. Recently, Kopf et al. [KFC*07] have in-
corporated a non-parametric global optimization approach.
Statistics-based methods have also been used for texture
mixing, which is related to 3D synthesis [BJEYLWO1]. 2D
texture synthesis techniques have addressed relevant prob-
lems for our application, such as multi-exemplar combina-
tion [ZZV*03], order-independent and parallelizable synthe-

sis (for on-demand synthesis) [WL02, LHO5]), or feature-
aware synthesis [WY04,LH06].

Other methods for 3D texture synthesis include pro-
cedural techniques for simple patterns [LPOO], procedu-
ral authoring techniques [CDM*02], stereological tech-
niques [JDRO4], or synthesis of cross-sections from one
image [ONOIO4]. The method by Owada et al. [ONOI04]
shares conceptual similarities with ours from the point of
view of the modeling paradigm, but the user must manu-
ally determine correspondences and guide the transforma-
tion from 2D to 3D texture, while in our case textures are
generated by morphing multiple exemplars.

Morphing has previously been exploited as a synthesis
mechanism as well. From the point of view of the method-
ology, our approach is most closely related to the one of
Matusik et al. [MZDO05]. As discussed throughout the pa-
per, we extend the warping-based morphing algorithm of
Matusik et al. to efficiently synthesize texture on arbitrary
3D points on-demand. Moreover, they exploited morphing
for 2D texture mixing rather than 3D synthesis. Their ap-
proach is derived from morphable models that combine non-
linear warps and linear analysis [JP98]. Other techniques for
texture morphing include the use of prescribed patterns and
flow [LLSYO2], or the application of morphing to transform
procedural textures [BD04].

Although not directly related to our problem, 3D texture
synthesis has recently expanded to applications including
the embedding of 3D microgeometry on larger-scale sur-
faces [PBFJO5, POCO6], or texturing free-surfaces of flu-
ids [BSM*06, KAK*06].

3. Texture Computation Pipeline

The computation of 3D textures from cross-section images
can be decomposed into two procedures. At runtime, texture
colors are synthesized on arbitrary 3D positions from pre-
defined model cross-sections through a morphing operation.
As a preprocessing step, the user must collect input images,
set them up together with 3D geometry in an interactive 3D
framework, and compute data necessary for the runtime mor-
phing. In this section, we outline both the runtime and pre-
processing tasks. Section 4 describes the interpolation do-

© The Eurographics Association and Blackwell Publishing 2007.



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

main in which we compute texture through morphing, while
section 5 describes the morphing algorithm itself. For the
problems of surface parameterization and atlas-packing, we
rely on existing area-preserving approaches [CHO2].

3.1. Runtime Texture Computation

Our algorithm produces the color of one target point at a
time. Given the 3D position p and orientation n of the target
point, together with a set of input exemplars { 27,..., Za},
the synthesis function ¢ = f(p,n, 27,...,Z,), outputs the
color ¢ of the point.

The texture synthesis is executed on an interpolation do-
main 2, which typically constitutes the interior of a 3D
model .. Given a target point p € &, we classify its loca-
tion in a binary space partitioning (BSP) of Z, constructed
as described in §4.1. Each region of the BSP is defined by
a subset of exemplars, which are employed for synthesizing
the output color ¢. We identify a source point p; and an inter-
polation weight w; for each exemplar, through projection and
scattered data interpolation, as described in detail in §4.2.

Once we know the source point and the weight for each
contributing exemplar, we apply texture morphing as de-
scribed in §5.2. Our morphing algorithm is an extension of
the work of Matusik et al. [MZDO05], with notable differ-
ences. In our setting, the source points are different on each
exemplar image, and each target point must be synthesized
independently, as the contributions of the exemplars vary
according to its position. Hence, we have designed an op-
timized algorithm for synthesizing the color of each target
point on demand, allowing for real-time synthesis of thou-
sands of pixels. Nevertheless, we account for the effect of
orientation on small-scale features (See §5.3), and we ensure
texture continuity across spatially-adjacent target points.

3.2. Preprocessing of Input Exemplars

The preprocessing is composed of four main tasks: (i) gen-
erating exemplars and placing them in the interpolation do-
main Z (See §4.3); (ii) constructing the BSP of the inter-
polation domain & (See §4.1); (iii) performing precompu-
tations (e.g., feature detection, histograms, etc.) on each of
the exemplars independently (See §5.3 and §5.1); and (iv)
defining pairwise warping functions between exemplars that
bound common BSP regions (See §5.1). We also allow for
some user interaction in the placement of exemplars or for
introducing preferred morphing paths (See §4.2).

Thanks to the versatility of our algorithm, exemplars may
be photographs of cross sections of a real object, or syn-
thetic images. Similarly, photographs of a certain object can
be used for synthesizing textures on yet a different object,
enabling efficient 3D texture transfer.

4. Texture Interpolation Domain

In this section, we describe the construction of the BSP of
the interpolation domain & using exemplars, and how inter-
polation is performed inside each region of the BSP. Then,

© The Eurographics Association and Blackwell Publishing 2007.

Figure 2: BSP-Tree Produced by Exemplars. Left: The
intersection of the top exemplar plane with the ears of the
bunny yields two connected components. Right: This situ-
ation is fixed by adding another exemplar. The exemplars
bounding the target point (in red) are highlighted.

we propose approaches for defining input exemplars and
placing them in the interpolation domain.

4.1. Binary Space Partitioning

As mentioned earlier, we compute textures on a domain
2 C R3 corresponding to the interior of a model .. Us-
ing a sorted sequence of input exemplars {.27,..., Z,}, we
construct a BSP of 7 in the following way. We assume that
each exemplar Z; constitutes a planar region in Z. Then,
given a subsequence of exemplars {.27,...,Z;}, defining
BSP regions {Z),...,%n}, the addition of the next exem-
plar 27, subdivides one of the regions, Z;, into two new
ones. Figure 2 shows the BSP of a bunny model produced by
a set of exemplars. It is important to highlight that a BSP is
actually a natural choice as data structure in our application.
Cutting a solid object by successive bisection of one of the
existing pieces with a planar cut produces indeed a BSP of
the original object.

Each region Z; of the BSP of Z is bounded by curved sur-
faces {.7;} € dZ, and planar exemplar subdomains {.2; ; =
2N 2;}. The exemplar subdomains {2 ;} must be topo-
logically equivalent to a disk. If this condition does not hold,
as shown in Figure 2, the user must introduce additional ex-
emplars. In §5.1, we discuss the computation of pairwise
warpings between exemplar subdomains.

4.2. Source Image Points and Interpolation Weights

In order to compute the color at a point p in the BSP region
9, the texture morphing algorithm takes as input source
points on the exemplars that bound Z;, along with associ-
ated interpolation weights. Here, we describe an algorithm
based on (possibly curved) projections for finding the source
points and computing their weights.

Conceptually, we define the source point p; of an exem-
plar subdomain Z; ; by projection of p onto .2; ; along a
path line y(p;) emanating from 2; ; and flowing through
;. If no assumption is made on texture isotropy, there is
no ideal projection scheme a priori. Any method producing
smooth path lines emanating from {.2; ;} and covering the
entire subdomain &; would be valid. In our implementation,



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

Figure 3: Interpolation Inside BSP Regions. Given a tar-
get point p, we define source points p; on the exemplars Z;
that bound the BSP region where p is located.

we have adopted the following approach. We compute the
barycenter of the exemplar .Z; ;, we define a curve y ema-
nating from the barycenter, and we sweep the exemplar plane
along v, until it contains the target point p. In this configura-
tion, we compute the ray from the swept barycenter to p, and
we map this ray onto the original exemplar 2Z; ; by sweep-
ing back along y. We define the location of the source point
p; along the mapped ray by preserving the ratio of distances
w.r.t. the barycenter and the boundary of the subdomain in
the original and swept configurations. We let the user choose
the curve y based on a priori knowledge about the textures. In
our current implementation, Y may be a straight line normal
to the exemplar, or a great arc on the sphere (which works
well for the oranges in Figure 1).

Given the set of source points {p;}, we define interpola-
tion weights for morphing based on scattered data interpola-
tion. Specifically, we compute the (pre-normalized) weight
w; of each source point p; based on Shepard interpolation:
wi = FIPI'H' In BSP regions that do not lie on the boundary

of 2, the source points {p;} define a convex polyhedron that
bounds p, and then it is also possible to use convex weights
given by e.g., mean-value coordinates [Flo03].

Our interpolation procedure is guaranteed to be continu-
ous inside regions &; of the BSP, as well as across regions.
The projection operation and the interpolation weights are
all continuous inside a given region. When a BSP boundary
is crossed, the interpolation is dominated by a single source
point, thus ensuring continuity as well. Since the morphing
algorithm described in §5 is also continuous, the complete
texture synthesis procedure is C? continuous. Of course, the
features of the input exemplars may not be continuous, there-
fore we do not enforce continuity on the output textures.

4.3. Defining Input Exemplars

The generation of input data for the algorithm encompasses
(1) the definition of texture attributes for the exemplars, (ii)
the definition of a polygonal representation of the model .,
and (iii) the placement of exemplar planes in the domain
2. We typically collect exemplars by taking photographs of
cross sections of real objects, but it is also possible to let
an artist define exemplars and their attributes. For example,

Figure 6 shows a case where exemplars were generated us-
ing 2D texture synthesis techniques [LHOS].

When trying to simulate the textures of a real object, the
model .# should approximate the boundary of the real-
world object that is cut for generating the exemplars. High
quality results could be generated by scanning the real-world
object, but a coarse approximation (such as the orange model
used in Figure 1) proved to be enough in our examples. Once
the representation of ./ is available, we provide the user
with an interactive tool for placing exemplar planes in Z, as
shown in the accompanying video. The user may typically
judge how many exemplars to add based on visual examina-
tion of the textures, but we have also incorporated a warping
quality metric [MZDO05] to aid with this judgement.

Since the model .#Z may not exactly correspond to the
real cut object and it is very hard to accurately place the ex-
emplars, we allow the user to place the exemplars approx-
imately, and then we warp them so that the texture images
exactly fit the boundary of .. In our implementation, we
constrain the image boundaries to the boundary of .# and
we perform a relaxation process in the interior.

5. Texture Morphing

In this section, we describe our algorithm for computing
the color of a 3D point as a morphing operation. First, we
summarize the texture morphing algorithm of Matusik et
al. [MZDO05], which comprises a preprocessing part for com-
puting image warpings, and the actual runtime morphing al-
gorithm. Our algorithm presents some differences in the pre-
processing of warpings, such as finding multilevel feature
correspondences. But, most importantly, our runtime mor-
phing algorithm is designed for efficiently computing the
texture of individual 3D points on-demand. This aspect is
essential when computing texture on the internal surface of
an object, as no pair of surface points shares interpolation
weights for morphing. In the second part of this section, we
introduce the definition of warping in our interpolation do-
main, and we describe an approximation to the inverse warp-
ing that allows for fast morphing at a single point at a time.
Moreover, we present an approach for feature enhancement
based on local high-frequency histogram computation.

5.1. Morphing Images

Given a set of input images {2;}, Matusik et al. defined
morphing as a convex combination of warped versions of the
images. Hence, their algorithm relies heavily on the compu-
tation of a warping for each pair of images (27, Z;). They
defined a bijective mapping f;; : 2; C R* — 2 C R?, such
that a point p; € .Z; maps to a point f;;(p;) € 2. Then, the
2D vector W;(p;) = f;j(pi) — pi is referred to as the warping,
and it can be regarded as a translation.

5.1.1. Computation of Warpings
In essence, we follow the same steps as Matusik et al.

for computing each mapping f;;: (i) apply an edge detec-

© The Eurographics Association and Blackwell Publishing 2007.



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

Figure 4: Morphing Using Gaussian Stacks. The two left-
most columns show feature maps for a kiwi and an onion.
On the top, feature map at full resolution; on the center, fea-
ture map at a level of our Gaussian stack; and on the bottom,
feature map at the same level without Gaussian stack. Notice
the blurry region in the center of the kiwi’s feature map. The
two rightmost columns show several steps in a morphing se-
quence. On the left, with our Gaussian stack; on the right,
without Gaussian stack, which noticeably increases blur.

tor [RTO1] to 2; and 2 to compute feature images; (ii)
compute a stack of feature images by downsampling; and
(iii) perform automatic multilevel feature matching by min-
imizing the Euclidean norm of feature image differences,
with a regularization term that measures image deformation.

In our setting, for every pair of exemplars that share a
boundary, we first align and scale them such that their axis-
aligned bounding boxes match. As opposed to Matusik et al.,
we apply multilevel feature detection, by computing Gaus-
sian stacks [LHOS] of the input exemplars, and applying the
edge detector and further downsampling to each image of the
Gaussian stack independently. Figure 4 shows the improve-
ment obtained with Gaussian stacks.

5.1.2. Computation of Morphed Images

Based on all pairwise mappings, Matusik et al. computed
the morphed image from convex color interpolation weights
o; and convex warping interpolation weights f3;. In order to
compute the color ¢ at pixel p, their algorithm performs a
convex combination of the images evaluated at pixels q;,
c(p) = Y, aici(q;), where each q; — p represents the inverse
warping of p based on the convex combination of warpings.
In other words, q; is the pixel in image Z; that maps to p:
q; +Y; BjWij(q;) = p. The complete morphing function can
then be expressed using the concept of inverse warping as:

1
c(p) =) aci(p+ (Z ﬁjWij> (p)- )
7 =

The evaluation of the inverse warping requires that each
warping W;; must be scaled by its associated weight, and

© The Eurographics Association and Blackwell Publishing 2007.

the weighted sum is then computed over the complete im-
age, searching for the pixel that maps to p. This search can
be implemented, e.g., by rasterization of the warped mesh
with original locations as attributes. When the morphing al-
gorithm is applied to a complete texture image, the cost of
computing the inverse of the scaled warping is amortized
over all target pixels. However, this approach is far from
optimal when the interpolation weights vary for each target
point, as is our case. In §5.2, we describe our optimized so-
lution for single-point computation.

Matusik et al. complete the morphing process by applying
a histogram matching for feature enhancement [HB95]. His-
togram computation also presents a cost dependent on the
size of the exemplars, which is amortized when computing a
full texture, but not in our case. In §5.3, we again present an
optimized solution for single-point computation.

5.2. Single-Point Multi-Exemplar Morphing

We now present the definition of warping in our BSP-based
interpolation domain, together with an efficient approxima-
tion of the inverse warping that can be explicitly evaluated.

5.2.1. Warping in the Interpolation Domain

In the interpolation domain &, morphing takes place among
different source points p; for each exemplar. For two exem-
plars (2, Z}), the warping vector W;; cannot be defined as
the difference vector between a point q € Z; and its cor-
responding point f;;(q) € 2. Instead, we account for the
translation between the reference systems of the two exem-
plars, and we redefine the warping as:

Wij(a) = (fij(a) —pj) + (pi—q)- ©)

As noted in §5.1, it is highly inefficient to compute the exact
inverse warping in the context of single-point morphing, but
we have devised an efficient approximation, presented next.

5.2.2. Efficient Warping Approximation

For texture morphing in the interpolation domain &, we
slightly modify (1). The source points {p;} vary across ex-
emplars, and we use the same weights {w;} (defined in §4.2)
for color and warping interpolation. Then, we obtain the fol-
lowing morphing equation:

-1
c(p) =) wici(pi+ (Z WjWij> (pi)), 3)
7 iFi

where q; —p; = (Z#iwj‘W,-j)*l (p;) is the inverse warping
of | B

In order to find the inverse warping on an exemplar .Z;, we
approximate the warping from each other exemplar 27, j # i
based on the value at the corresponding point of its source
point, f;;(p;). In other words, W;;(q) ~ W;;(f;i(p;)) = pi —
fi(p;). From this approximation, we reach the estimate for



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

Figure 5: Feature Enhancement with Local Histograms.
Morphing from an onion to a cabbage. The rightmost column
compares a portion of the morphed texture, with feature en-
hancement through our local histogram computation (top),
and without feature enhancement (bottom).

the inverse warping in (3), which yields

q; = wipi+ Y wifji(p)). “
J#i

The approximation results in the evaluation of the convex
combination of the source texel p; € 2; and the correspond-
ing points of all other source points p; € 27, j # i. Remark-
ably, this approximation produces the accurate result if one
of the weights wi = 1, and this contributes to the continu-
ity of the morphing as the source point crosses boundaries
of BSP regions. Our approximation obviously does not yield
the same morphs as using the exact warping, as the warping
is a highly nonlinear function, but our approach produces
plausible, sharp results.

5.3. Feature Enhancement

The morphing algorithm we just described inevitably pro-
duces a certain blending of the source exemplars. It exploits
the warping for morphing large and medium scale features
effectively, but small scale features are blended. As men-
tioned before, Matusik et al. [MZDO0S5] proposed a histogram
matching technique for reinserting small scale features into
the final texture. The basic idea is to compute the histogram
of high-frequency spectra in the target texture, and replace
colors based on the probability distribution functions of the
source exemplars. Matusik et al. employed steerable pyra-
mids [HB95] for matching histograms at high-frequencies
and then recovering the full texture colors.

Although effective, this feature enhancement approach re-
quires the computation of the histogram on the full final tex-
ture image, which is inefficient for our per-point on-demand
computation. However, one can observe that the histogram
in the high-frequency spectrum can be well approximated
by windowing the computation. In other words, it suffices
to compute the histogram in a local kernel around the tar-
get point. We exploit this observation by precomputing local
histograms (with a 7 x 7 kernel) for every pixel of the in-
put exemplars, and similarly computing at runtime only a lo-
cal histogram around the target point. In fact, since textures
are computed on a surface, we anyway must compute the
texture on a local kernel around each target point. Reusing
the texture values from neighboring points also produces
an orientation-aware histogram matching, as the small-scale

Figure 6: Bunny with Patterned Textures. Left: exemplars
(a circuit board, leaves, and water reflections) and bunny’s
surface; Right: cross-section of the textured bunny.

features depend on the local orientation of the surface. Fig-
ure 5 shows the successful feature enhancement achieved
with our local histogram computation.

6. Results

We have applied our appearance modeling framework in
a variety of examples that show the diversity of problems
where it can be used, as well as its versatility in terms of
input data. Our examples have been generated on a laptop,
with 1.7 GHz Intel Centrino processor and 1 GB of RAM.
With such commodity hardware, our on-demand texturing
algorithm is capable of producing a throughput of approxi-
mately 20000 pixels/sec. Histogram matching, with a 7 x 7
kernel, takes 50% of the computations.

One of the applications where our modeling paradigm
shows great benefit is the simulation of cutting and fracture.
Figure 8 shows two examples of interactive cutting simu-
lation. Note that the simulations were created interactively,
although they were later ray-traced offline. During interac-
tive cutting or fracture, the on-demand computation of tex-
ture on internal surfaces plays a crucial role on the richness
and realism of the results. The top row of Figure 8 depicts
the modeling of internal surfaces of the apple with the tex-
ture of an orange. The slices appear crisp and clear, and one
can easily distinguish the border and the different features
of the orange, even though we only performed three cross-
sections on the real orange. Notice that the cuts in the simu-
lation are not planar, yet our technique successfully captures
large-scale texture features with changing orientation. The
bottom row of Figure 8 depicts a similar animation, where
texture was computed from cross-sections of a cabbage and
an onion (See Figure 5). The morphing between onion tex-
ture (bottom of the apple) and cabbage texture (top of the
apple) is clearly visible, while features are sharply captured.

Our versatile texturing approach allows the combination
of highly diverse textures, as shown in Figures 6 and 7. In
these examples, we use a simple sphere as the containing
object .. Notice also that the colors of exemplars do not
match at their intersections, but our morphing was able to
handle this situation without artifacts.

© The Eurographics Association and Blackwell Publishing 2007.



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

y

Figure 8: New Generation of Transgenic Fruits. Virtual slicing of an apple, showing internal textures generated with our
algorithm. Top: orange texture morphed from three cross-sections. Bottom: morph between onion and cabbage cross-sections.

7. Conclusions and Future Work

The texturing technique presented in this paper provides a
very simple yet powerful paradigm for creating appearance
models for 3D objects. We have shown its application for
carving objects or texturing internal surfaces in cutting sim-
ulation. The simplicity of the method, where a user takes
cross-section photographs of real objects and places them in
an interactive 3D editor, makes it highly amenable.

As shown in the examples, our method produces highly
realistic textures for internal surfaces of models that resem-
ble real objects, but it also produces plausible textures for
non-realistic examples. Our algorithm captures successfully
the morphing of global and medium-scale features through
multi-level warping, and reintroduces small features effi-
ciently through local histogram matching. Moreover, an effi-
cient approximation of warping enables the implementation

© The Eurographics Association and Blackwell Publishing 2007.

of the algorithm as an on-demand routine for texturing inter-
nal surfaces during cutting simulation.

In many of the examples we have produced (e.g., morph-
ing between onion and cabbage, the bunnies, or the dragon),
it is practically impossible to find a warping between the
exemplars that completely avoids blur. In essence, the fea-
ture images are not pure deformations of each other, hence
a warping is not sufficient for capturing the transition. Al-
though our method succeeds at producing plausible results
with little blur, the automatic feature matching may lead
to warpings that produce high feature distortion when mor-
phing between images. A purely morphing-based technique
may not be the best solution for such examples, and it would
be interesting to study combinations of morphing-based tex-
turing with techniques from stereology [JDRO04] or pattern-
matching optimization [KFC*07].



N. Pietroni, M. A. Otaduy, B. Bickel, F. Ganovelli & M. Gross / Texturing Internal Surfaces from a Few Cross Sections

Our current implementation is limited to synthesis of
color, but it would be interesting to investigate other ap-
pearance attributes. It is not obvious, however, that our
morphing-based approach will be applicable to e.g., bump
mapping, as its major strength is capturing global features.

We also consider the possibility of designing a parallel
implementation on graphics hardware, as this could accel-
erate the morphing stage of the algorithm. Moreover, there
could be cases where the texture does not need to be stored,
as the user simply looks at an internal surface once, while
sweeping through the object. The BSP-tree poses probably
the biggest difficulties for a parallel implementation, and one
option could be to limit the cross-sections to be axis-aligned,
and implement the BSP-tree as a K-d tree.

Acknowledgements

We would like to thank the anonymous reviewers for their
comments, and members of the Computer Graphics Lab in
Zurich for their help, in particular Filid Sadlo, Simon Hein-
zle and Jens Puwein. This research was supported in part by
the NCCR Co-Me of the Swiss National Science Founda-
tion.

References

[BD0O4] BOURQUE E., DUDEK G.: Procedural texture matching
and transformation. Proc. of Eurographics (2004).

[BJEYLWO1] BAR-JOSEPH Z., EL-YANIV R., LISCHINSKI D.,
WERMAN M.: Texture mixing and texture movie synthesis us-
ing statistical learning. IEEE Transactions on Visualization and
Computer Graphics 7,2 (2001), 120-135.

[BSM*06] BARGTEIL A. W., SIN F., MICHAELS J. E., GOK-
TEKIN T. G., O’BRIEN J. F.: A texture synthesis method for
liquid animations. Proc. of ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (2006).

[CDM*02] CUTLER B., DORSEY J., MCMILLAN L., MULLER
M., JAGNOW R.: A procedural approach to authoring solid mod-
els. Proc. of ACM SIGGRAPH (2002), 302-311.

[CHO2] CARR N. A., HART J. C.: Meshed atlases for real-
time procedural solid texturing. ACM Trans. on Graphics 21,
2(2002).

[DGF98] DISCHLER J. M., GHAZANFARPOUR D., FREYDIER

R.: Anisotropic solid texture synthesis using orthogonal 2d
views. Proc. of Eurographics (1998), 87-96.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. Proc. of IEEE ICCV (1999).

[EMP*94] EBERT D., MUSGRAVE K., PEACHEY D., PERLIN
K., WORLEY S.: Texturing and Modeling: A Procedural Ap-
proach. Academic Press, 1994.

[FKN80] FucHs H., KEDEM Z. M., NAYLOR B. F.: On visi-
ble surface generation by a priori tree structures. Proc. of ACM
SIGGRAPH (1980), 124-133.

[Flo03] FLOATER M. S.: Mean value coordinates. Computer
Aided Geometric Design 20, 1 (2003), 19-27.

[HB95] HEEGER D. J., BERGEN J. R.: Pyramid-based texture
analysis/synthesis. Proc. of ACM SIGGRAPH (1995), 229-238.

[HS90] HIGHAM N. J., SCHREIBER S. S.: Fast polar decom-
position of an arbitrary matrix. SIAM Journal on Scientific and
Statistical Computing 11,4 (1990), 648-655.

[JDR0O4] JAGNOW R., DORSEY J., RUSHMEIER H.: Stereolog-
ical techniques for solid textures. Proc. of ACM SIGGRAPH
(2004), 329-335.

[JP98] JONES M. J., PoGGIO T.: Multidimensional morphable
models. Proc. of ICCV (1998), 683-688.

[KAK*06] KWATRA V., ADALSTEINSSON D., KWATRA N.,
CARLSON M., LIN M. C.: Texturing fluids. ACM SIGGRAPH
Sketch (2006).

[KFC*07] KoPF J., Fu C.-W., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D., WONG T.-T.: Solid texture synthesis from 2d
exemplars. Proc. of ACM SIGGRAPH (2007).

[LHOS5] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. Proc. of ACM SIGGRAPH (2005), 777-786.

[LHO6] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. Proc. of ACM SIGGRAPH (2006), 541-548.

[LLSY02] Liu Z., Liu C., SHUM H.-Y., YU Y.: Pattern-based
texture metamorphosis. Proc. of Pacific Graphics Conference
(2002).

[LPOO] LEFEBVRE L., POULIN P.: Analysis and synthesis of
structural textures. Proc. of Graphics Interface (2000).

[MZDO05] MATUSIK W., ZWICKER M., DURAND F.: Texture
design using a simpicial complex of morphable textures. Proc. of
ACM SIGGRAPH (2005), 787-794.

[ONOIO4] OWADA S., NIELSEN F., OKABE M., IGARASHI T.:
Volumetric illustration: Designing 3d models with internal tex-
tures. Proc. of ACM SIGGRAPH (2004), 322-328.

[PBFJO5] PORUMBESCU S., BUDGE B., FENG L., JOY K.: Shell
maps. Proc. of ACM SIGGRAPH (2005), 626-633.

[Per85] PERLIN K.: An image synthesizer. Proc. of ACM SIG-
GRAPH (1985), 287-296.

[POC06] POLICARPO F., OLIVEIRA M., COMBA J.: Real-time
relief mapping on arbitrary polygonal surfaces. Proc. of Sympo-
sium on Interactive 3D Graphics and Games (2006), 55-62.

[RTO1] RuzoN M., ToMAsI C.: Edge, junction, and corner de-
tection using color distributions. /[EEE Trans. on Pattern Analysis
and Machine Intelligence 23, 11 (2001), 1281-1295.

[SKvW*92] SEGAL M., KOROBKIN C., VAN WIDENFELT R.,
FORAN J., HAEBERLI P.: Fast shadows and lighting effects us-
ing texture mapping. Proc. of ACM SIGGRAPH (1992).

[WeiO1] WEI L.-Y.: Texture Synthesis by Fixed Neighborhood
Searching. PhD thesis, Stanford University, 2001.

[WLO00] WEI L.-Y., LEVOY M.: Fast texture synthesis using
tree-structured vector quantization. Proc. of ACM SIGGRAPH
(2000).

[WL02] WEIL.-Y., LEVOY M.: Order-Indpendent Texture Syn-
thesis. Tech. Rep. TR-2002-01, Stanford University, 2002.

[WY04] WU Q., YU Y.: Feature matching and deformation for
texture synthesis. Proc. of ACM SIGGRAPH (2004), 362-365.

[ZZV*03] ZHANG].,ZHou K., VELHO L., GUO B., SHUM H.-
Y.: Synthesis of progressively varying textures on arbitrary sur-
faces. Proc. of ACM SIGGRAPH (2003), 295-302.

© The Eurographics Association and Blackwell Publishing 2007.



